Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
J Hepatol ; 79(5): 1129-1138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37459920

RESUMEN

BACKGROUND & AIMS: Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS: HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS: From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS: The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS: Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.

4.
Nat Rev Drug Discov ; 22(7): 585-603, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37173515

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.


Asunto(s)
COVID-19 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Descubrimiento de Drogas , Pandemias
5.
Nature ; 618(7965): 590-597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258672

RESUMEN

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Virus de la Influenza A , Virus de la Influenza B , Vacunas contra la Influenza , Gripe Humana , Imitación Molecular , Neuraminidasa , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Especificidad de Anticuerpos/inmunología , Arginina/química , Dominio Catalítico , Hemaglutininas Virales/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/enzimología , Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/clasificación , Virus de la Influenza B/enzimología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Estaciones del Año , Ácidos Siálicos/química
6.
Sci Transl Med ; 15(690): eadd3055, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018420

RESUMEN

Monoclonal antibodies can fill a critical gap to help stop the next infectious disease outbreak from becoming the next pandemic.


Asunto(s)
Gripe Humana , Vacunas , Humanos , Gripe Humana/epidemiología , Pandemias/prevención & control , Brotes de Enfermedades/prevención & control
7.
Science ; 378(6620): 619-627, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36264829

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Memoria Inmunológica , Células B de Memoria/inmunología
8.
Science ; 377(6607): 735-742, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857703

RESUMEN

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Humanos , Péptidos/inmunología , Unión Proteica , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
9.
Nat Commun ; 13(1): 3824, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780162

RESUMEN

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Combinación de Medicamentos , Humanos , Glicoproteínas de Membrana , Ratones , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
10.
bioRxiv ; 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35677069

RESUMEN

SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.

11.
Clin Infect Dis ; 75(1): e380-e388, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35219277

RESUMEN

BACKGROUND: Open-label platform trials and a prospective meta-analysis suggest efficacy of anti-interleukin (IL)-6R therapies in hospitalized patients with coronavirus disease 2019 (COVID-19) receiving corticosteroids. This study evaluated the efficacy and safety of sarilumab, an anti-IL-6R monoclonal antibody, in the treatment of hospitalized patients with COVID-19. METHODS: In this adaptive, phase 2/3, randomized, double-blind, placebo-controlled trial, adults hospitalized with COVID-19 received intravenous sarilumab 400 mg or placebo. The phase 3 primary analysis population included patients with critical COVID-19 receiving mechanical ventilation (MV). The primary outcome was proportion of patients with ≥1-point improvement in clinical status from baseline to day 22. RESULTS: There were 457 and 1365 patients randomized and treated in phases 2 and 3, respectively. In phase 3, patients with critical COVID-19 receiving MV (n = 298; 28.2% on corticosteroids), the proportion with ≥1-point improvement in clinical status (alive, not receiving MV) at day 22 was 43.2% for sarilumab and 35.5% for placebo (risk difference, +7.5%; 95% confidence interval [CI], -7.4 to 21.3; P =.3261), a relative risk improvement of 21.7%. In post hoc analyses pooling phase 2 and 3 critical patients receiving MV, the hazard ratio for death for sarilumab vs placebo was 0.76 (95% CI, .51 to 1.13) overall and 0.49 (95% CI, .25 to .94) in patients receiving corticosteroids at baseline. CONCLUSIONS: This study did not establish the efficacy of sarilumab in hospitalized patients with severe/critical COVID-19. Post hoc analyses were consistent with other studies that found a benefit of sarilumab in patients receiving corticosteroids. CLINICAL TRIALS REGISTRATION: NCT04315298.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adulto , Anticuerpos Monoclonales Humanizados , Humanos , Estudios Prospectivos , Resultado del Tratamiento
12.
Nat Med ; 28(3): 490-495, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35046573

RESUMEN

The emergence of the highly transmissible B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is concerning for antibody countermeasure efficacy because of the number of mutations in the spike protein. In this study, we tested a panel of anti-receptor-binding domain monoclonal antibodies (mAbs) corresponding to those in clinical use by Vir Biotechnology (S309, the parent mAb of VIR-7831 (sotrovimab)), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Eli Lilly (LY-CoV555 and LY-CoV016) and Celltrion (CT-P59) for their ability to neutralize an infectious B.1.1.529 Omicron isolate. Several mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987 and CT-P59) completely lost neutralizing activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (COV2-2196 and COV2-2130 combination, ~12-fold decrease) or minimally affected (S309). Our results suggest that several, but not all, of the antibodies in clinical use might lose efficacy against the B.1.1.529 Omicron variant.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Humanos , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus/genética
13.
Nature ; 602(7898): 664-670, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016195

RESUMEN

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Deriva y Cambio Antigénico/genética , Vacunas contra la COVID-19/inmunología , Línea Celular , Convalecencia , Epítopos de Linfocito B/inmunología , Humanos , Evasión Inmune , Ratones , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vesiculovirus/genética
14.
JAMA ; 327(5): 432-441, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029629

RESUMEN

Importance: Easy-to-administer anti-SARS-CoV-2 treatments may be used to prevent progression from asymptomatic infection to symptomatic disease and to reduce viral carriage. Objective: To evaluate the effect of combination subcutaneous casirivimab and imdevimab on progression from early asymptomatic SARS-CoV-2 infection to symptomatic COVID-19. Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, phase 3 trial of close household contacts of a SARS-CoV-2-infected index case at 112 sites in the US, Romania, and Moldova enrolled July 13, 2020-January 28, 2021; follow-up ended March 11, 2021. Asymptomatic individuals (aged ≥12 years) were eligible if identified within 96 hours of index case positive test collection. Results from 314 individuals positive on SARS-CoV-2 reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) testing are reported. Interventions: Individuals were randomized 1:1 to receive 1 dose of subcutaneous casirivimab and imdevimab, 1200 mg (600 mg of each; n = 158), or placebo (n = 156). Main Outcomes and Measures: The primary end point was the proportion of seronegative participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy end points were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10 copies/mL). Results: Among 314 randomized participants (mean age, 41.0 years; 51.6% women), 310 (99.7%) completed the efficacy assessment period; 204 were asymptomatic and seronegative at baseline and included in the primary efficacy analysis. Subcutaneous casirivimab and imdevimab, 1200 mg, significantly prevented progression to symptomatic disease (29/100 [29.0%] vs 44/104 [42.3%] with placebo; odds ratio, 0.54 [95% CI, 0.30-0.97]; P = .04; absolute risk difference, -13.3% [95% CI, -26.3% to -0.3%]). Casirivimab and imdevimab reduced the number of symptomatic weeks per 1000 participants (895.7 weeks vs 1637.4 weeks with placebo; P = .03), an approximately 5.6-day reduction in symptom duration per symptomatic participant. Treatment with casirivimab and imdevimab also reduced the number of high viral load weeks per 1000 participants (489.8 weeks vs 811.9 weeks with placebo; P = .001). The proportion of participants receiving casirivimab and imdevimab who had 1 or more treatment-emergent adverse event was 33.5% vs 48.1% for placebo, including events related (25.8% vs 39.7%) or not related (11.0% vs 16.0%) to COVID-19. Conclusions and Relevance: Among asymptomatic SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact, treatment with subcutaneous casirivimab and imdevimab antibody combination vs placebo significantly reduced the incidence of symptomatic COVID-19 over 28 days. Trial Registration: ClinicalTrials.gov Identifier: NCT04452318.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Infecciones Asintomáticas , COVID-19/epidemiología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Niño , Progresión de la Enfermedad , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Factores de Riesgo , Carga Viral
15.
J Allergy Clin Immunol Glob ; 1(1): 9-15, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37780074

RESUMEN

Background: The safety and tolerability of live attenuated vaccines in patients administered dupilumab for moderate-to-severe asthma have not been previously evaluated. During the LIBERTY ASTHMA TRAVERSE open-label extension study (ClinicalTrials.gov identifier NCT02134028), a yellow fever outbreak in Brazil required administration of a live attenuated vaccine to at-risk individuals. Objective: Our aim was to evaluate immune response to a live attenuated vaccine in the context of IL-4 receptor blockade (REGN1103, a dupilumab surrogate) in mice and in dupilumab-treated patients with moderate-to-severe asthma who participated in TRAVERSE. Methods: In the preclinical study, mice were coadministered REGN1103/isotype control and live attenuated influenza vaccine/control, followed by influenza virus challenge. During TRAVERSE, 37 patients discontinued dupilumab treatment and were administered 17D live attenuated yellow fever vaccine (YFV). Safety and tolerability data, dupilumab serum concentrations, and plaque reduction neutralization titers before and after vaccination were collected. Results: In the preclinical study, there was no impact of REGN1103 on vaccine efficacy in mice. In TRAVERSE, all 37 patients who received YFV achieved seroprotection despite most having therapeutic levels of dupilumab, with the magnitude of response appearing unrelated to prevaccination dupilumab concentrations. No instances of vaccine-related adverse events or vaccine hypersensitivity were reported in 36 patients; 1 patient reported nonserious body ache, malaise, and dizziness 7 days after vaccination but recovered fully. Conclusion: The preclinical model suggested that dupilumab does not affect the efficacy of live attenuated influenza vaccine. The live attenuated YFV did not raise safety concerns and appeared to be well tolerated in patients with asthma who recently discontinued dupilumab treatment, and dupilumab concentrations had no apparent impact on immunologic response to the vaccine.

16.
bioRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931194

RESUMEN

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb 1 , retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab 2 , S2X259 3 and S2H97 4 , neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

17.
N Engl J Med ; 385(13): 1184-1195, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34347950

RESUMEN

BACKGROUND: REGEN-COV (previously known as REGN-COV2), a combination of the monoclonal antibodies casirivimab and imdevimab, has been shown to markedly reduce the risk of hospitalization or death among high-risk persons with coronavirus disease 2019 (Covid-19). Whether subcutaneous REGEN-COV prevents severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent Covid-19 in persons at high risk for infection because of household exposure to a person with SARS-CoV-2 infection is unknown. METHODS: We randomly assigned, in a 1:1 ratio, participants (≥12 years of age) who were enrolled within 96 hours after a household contact received a diagnosis of SARS-CoV-2 infection to receive a total dose of 1200 mg of REGEN-COV or matching placebo administered by means of subcutaneous injection. At the time of randomization, participants were stratified according to the results of the local diagnostic assay for SARS-CoV-2 and according to age. The primary efficacy end point was the development of symptomatic SARS-CoV-2 infection through day 28 in participants who did not have SARS-CoV-2 infection (as measured by reverse-transcriptase-quantitative polymerase-chain-reaction assay) or previous immunity (seronegativity). RESULTS: Symptomatic SARS-CoV-2 infection developed in 11 of 753 participants in the REGEN-COV group (1.5%) and in 59 of 752 participants in the placebo group (7.8%) (relative risk reduction [1 minus the relative risk], 81.4%; P<0.001). In weeks 2 to 4, a total of 2 of 753 participants in the REGEN-COV group (0.3%) and 27 of 752 participants in the placebo group (3.6%) had symptomatic SARS-CoV-2 infection (relative risk reduction, 92.6%). REGEN-COV also prevented symptomatic and asymptomatic infections overall (relative risk reduction, 66.4%). Among symptomatic infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV than with placebo (1.2 weeks and 3.2 weeks, respectively), and the duration of a high viral load (>104 copies per milliliter) was shorter (0.4 weeks and 1.3 weeks, respectively). No dose-limiting toxic effects of REGEN-COV were noted. CONCLUSIONS: Subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in previously uninfected household contacts of infected persons. Among the participants who became infected, REGEN-COV reduced the duration of symptomatic disease and the duration of a high viral load. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04452318.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Asintomáticas , COVID-19/virología , Niño , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Carga Viral , Adulto Joven , Tratamiento Farmacológico de COVID-19
18.
Nature ; 598(7880): 342-347, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464958

RESUMEN

SARS-CoV-2 infection-which involves both cell attachment and membrane fusion-relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract1-3, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Lectinas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Fusión Celular , Línea Celular , Cricetinae , Femenino , Humanos , Lectinas/inmunología , Lectinas Tipo C/metabolismo , Fusión de Membrana , Receptores de Superficie Celular/metabolismo , SARS-CoV-2/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
19.
Cell ; 184(17): 4593-4595, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416148
20.
medRxiv ; 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34159343

RESUMEN

IMPORTANCE: Easy-to-administer antiviral treatments may be used to prevent progression from asymptomatic infection to COVID-19 and to reduce viral carriage. OBJECTIVE: Evaluate the efficacy and safety of subcutaneous casirivimab and imdevimab antibody combination (REGEN-COV) to prevent progression from early asymptomatic SARS-CoV-2 infection to COVID-19. DESIGN: Randomized, double-blind, placebo-controlled, phase 3 study that enrolled asymptomatic close contacts living with a SARS-CoV-2-infected household member (index case). Participants who were SARS-CoV-2 RT-qPCR-positive at baseline were included in the analysis reported here. SETTING: Multicenter trial conducted at 112 sites in the United States, Romania, and Moldova. PARTICIPANTS: Asymptomatic individuals ≥12 years of age were eligible if identified within 96 hours of collection of the index case's positive SARS-CoV-2 test sample. INTERVENTIONS: A total of 314 asymptomatic, SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact were randomized 1:1 to receive a single dose of subcutaneous REGEN-COV 1200mg (n=158) or placebo (n=156). MAIN OUTCOMES AND MEASURES: The primary endpoint was the proportion of participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy endpoints were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10 copies/mL). Safety was assessed in all treated participants. RESULTS: Subcutaneous REGEN-COV 1200mg significantly prevented progression from asymptomatic to symptomatic disease compared with placebo (31.5% relative risk reduction; 29/100 [29.0%] vs 44/104 [42.3%], respectively; P=.0380). REGEN-COV reduced the overall population burden of high-viral load weeks (39.7% reduction vs placebo; 48 vs 82 total weeks; P=.0010) and of symptomatic weeks (45.3% reduction vs placebo; 89.6 vs 170.3 total weeks; P=.0273), the latter corresponding to an approximately 5.6-day reduction in symptom duration per symptomatic participant. Six placebo-treated participants had a COVID-19-related hospitalization or ER visit versus none for those receiving REGEN-COV. The proportion of participants receiving placebo who had ≥1 treatment-emergent adverse events was 48.1% compared with 33.5% for those receiving REGEN-COV, including events related (39.7% vs 25.8%, respectively) or not related (16.0% vs 11.0%, respectively) to COVID-19. CONCLUSIONS AND RELEVANCE: Subcutaneous REGEN-COV 1200mg prevented progression from asymptomatic SARS-CoV-2 infection to COVID-19, reduced the duration of high viral load and symptoms, and was well tolerated. TRIAL REGISTRATION: ClinicalTrials.gov Identifier, NCT04452318.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...